SyDe312 (Winter 2005)

Unit 2 - Solutions

March 3, 2005

Chapter 3 - Root Finding for Nonlinear Equations

3.3-1 Secant method

Next iterate is calculated using:

$$
x_{k+1} \approx x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

In all cases the interval $\left[x_{o}, x_{1}\right]=[0,2]$.
3.3-1a
$x^{3}-x^{2}-x-1=0$
The real root is required.
We try an initial iterate $x_{o}=2.0$. The application of the secant method results in the following iterations:

k	x_{k}	$f\left(x_{k}\right)$	error
0	0.0	-1.0	-
1	2.000000	1.000000	-1.000000
2	2.000000	-2.000000	$6.667 E-01$
3	1.6666667	-0.81481	$4.583 E-01$
4	2.1250000	1.9551	$-3.235 E-01$
5	1.801500	-0.200340	$3.007 E-01$
6	1.831600	-0.041982	$7.972 E-03$
7	1.839500	0.0013563	$-2.495 E-04$
8	1.8392682	$-8.6 E-06$	$1.588 E-06$

3.3-1b

$x-1-0.3 \cos (x)=0$
Iterations to converge $=5$
Root $=1.1284251$
3.3-1c
$\cos x=(1 / 2)+\sin x$
Smallest positive root is required.
Iterations to converge $=4$
Root $=0.4240310$

3.3-1d

$x=e^{-x}$

Iterations to converge $=6$
Root $=0.5671433$

3.3-1e

$e^{-x}=\sin x$
Iterations to converge $=9$
Root $=0.5885327$
3.3-1f
$x^{3}-2 x-2=0$
The real root is required.
Iterations to converge $=3$
Root $=1.1284251$

3.3-1g

$x^{4}-x-1=0$
All reall roots are required.
Iterations to converge $=4$
Root $=1.22074408$

3.3-5 Secant method

$x^{3}-3 x^{2}+3 x-1$
The final roots depend on the initial guess. The results with various initial guess are summarized below:

$\left[x_{o}, x_{1}\right]$	Root	Iterations
$[0.5,2.0]$	0.9995659	30
$[0.5,0.9]$	0.9970743	13
$[0.9,1.02]$	1.0054476	6

3.3-6 Secant Method

$x^{4}-5.4 x^{3}+10.56 x^{2}-8.954 x+2.7951$
The final roots depend on the initial guess. Look for the root α in $[1,1.2]$. The results with various initial guess are summarized below. Notice that the multiplicity of roots at $\alpha=1.1$ causes problems when $f\left(x_{n}\right)$ and $f\left(x_{n+1}\right)$ are too close (marked by $*$ in the following summary).

$\left[x_{o}, x_{1}\right]$	Root	Iterations
$[1.0,1.2]$	1.1095399	$*$
$[0.9,1.2]$	1.1058519	$*$
$[0.0,2.0]$	2.1000009	9
$[1.0,2.0]$	1.0909501	$*$
$[2.0,10.0]$	2.0999999	8

3.5-1 Ill-behaved Newton's Method

$p(x)=x^{5}+0.9 x^{4}-1.62 x^{3}-1.458 x^{2}+0.6561 x+0.59049$
We use $\epsilon=10^{-8}$ and initial guesses of -1 and 1 .

Initial guess $x_{o}=-1$

$x_{0}=-1.0$		
k	x_{k}	Ratio
1	-0.9677970	
2	-0.9457323	0.6851
3	-0.9307379	0.6795
4	-0.9206112	0.6754
5	-0.9138051	0.6721
6	-0.9092333	0.6717
7	-0.9063234	0.6365
8	-0.9044989	0.6270
9	-0.9032919	0.6615
10	-0.9021632	0.9351
11	-0.9021632	0.0000

In about 11 iterations, it converged to -0.9021632 . It can be seen that the ratio largely stayed around $2 / 3=(m-1) / m$ pointing to multiplicity of roots to be $m=3$.
Now, considering $x=-0.9$ a root of the given polynomial, we synthetically divide the given polynomial by $x+0.9$ (alternatively, long division). This can be accomplished using matlab deconv command.

$$
p_{4}(x)=x^{4}-1.62 x^{2}+0.6561
$$

Since the remainder is zero, we can say that $x=-0.9$ is a root of the given polynomial. Building on our insight gained from the ratio in the iterations of Newton's method (i.e. $m=3$), we further synthetically divide this polynomial by $x+0.9$ to get the following deflated polynomial:

$$
p_{3}(x)=x^{3}-0.9 x^{2}-0.81 x-0.729
$$

We may once again synthetically divide the resultant polynomial by $x+0.9$ to show that $x=-0.9$ is also a root of $p_{3}(x)$. Once again, a zero remainder points that $x+0.9$ is a root for the deflated polynomial.

$$
p_{2}(x)=x^{2}-0.81
$$

(An alternate and frequently more accurate method would be to use exact/analytical formula for finding the roots of a cubic equation).
At this point it is desirable to use a (careful) quadratic formula to find the remaining roots exactly.

Initial guess $x_{o}=1$
Results of Newton's method are summarized below:

$x_{0}=1.0$		
k	x_{k}	Ratio
1	0.9536586	
2	0.9279458	0.5549
3	0.9142861	0.5312
4	0.9072263	0.5168
5	0.9036348	0.5087
6	0.9018209	0.5051
7	0.9009129	0.5005
8	0.9004606	0.4982
9	0.9002500	0.4655
10	0.9001275	0.5819
11	0.9000874	0.3268
12	0.9000290	1.4583
13	0.9002051	-3.015
14	0.9001305	-0.424
15	0.9000913	0.5243
16	0.8999794	2.8584
17	0.9002275	-2.217
18	0.9001377	-0.362
19	0.9000635	0.8261
20	0.9000635	0.0000

In about 20 iterations, it converged to 0.9000635 . It can be seen that the ratio largely stayed around $1 / 2=(m-1) / m$ pointing to multiplicity of roots to be $m=2$.
Now, considering $x=0.9$ a root of the given polynomial, we synthetically divide the given polynomial by $x-0.9$ (alternatively, long division or matlab deconv).

$$
p_{4}(x)=x^{4}+1.8 x^{3}-1.458 x-1.9683
$$

This deflation process may be repeated to get a cubic (and, subsequently, quadratic) polynomial for which we have exact analytical formulae.

3.5-2 Ill-behaved Newton's method

$p(x)=x^{4}-3.2 x^{3}+0.96 x^{2} 4.608 x-3.456$
We try different initial iterates. Results of Newton's method are summarized below:

$x_{0}=-1.0$		
k	x_{k}	Ratio
1	-1.2661290	
2	-1.2045493	-0.2314
3	-1.2000235	0.0734
4	-1.2000000	0.0052
5	-1.2000000	0.0000

In about 5 iterations, it converged to -1.2 . It can be seen that the ratio largely stayed around $0=(m-1) / m$ pointing to multiplicity of roots to be $m=1$.

$x_{0}=1.0$		
k	x_{k}	Ratio
1	2.0201614	
2	2.0010591	0.2393
3	2.0000036	0.0553
4	2.0000006	0.0029
5	2.0000002	0.0769
6	2.0000002	0.0000

In about 6 iterations, it converged to 2.0 . It can be seen that the ratio largely stayed much smaller than 0.5 pointing to multiplicity of roots to be $m=1$.

$x_{0}=1.0$		
k	x_{k}	Ratio
1	1.0948280	
2	1.1456281	0.5357
3	1.1722769	0.5255
4	1.1859957	0.5148
5	1.19296	0.5076
6	1.1964922	0.5072
7	1.1982722	0.5039
8	1.1991687	0.5036
9	1.1996911	0.5827
10	1.2002941	1.1545
11	1.1998723	-0.699
12	1.2008450	-2.305
13	1.2003301	-0.529
14	1.999540	0.7305
15	1.2026640	-0.500
16	1.2013078	0.5259
17	1.2005945	0.7324
18	1.2000722	3.2891
19	1.1983540	-0.482
20	1.1991823	0.5497
21	1.1996375	0.5437
22	1.1998088	0.3763
23	1.2001337	1.8963
24	1.2001337	0.0000

In about 24 iterations it converged to 1.2001337 . It can be seen that the ratio largely stayed around $0.5=(m-1) / m$ pointing to multiplicity of roots to be $m=2$. With this insight, may look at the the root of $p^{\prime}(x)=4 x^{3}-9.6 x^{2}+1.92 x+4.608$
With the approximate root used as the initial iterate ($x_{0}=1.2001337$), we find that it quickly converges to a root of 1.2 , as shown in the following summary:

$x_{0}=1.2001337$		
k	x_{k}	Ratio
1	1.1999999999	
2	1.1999999999	0.0000

We may also use the approximate root of 1.2 to deflate the given polynomial through
synthetic division by $(x-1.2)$ to get the following cubic polynomial: $p_{3}(x)=x^{3}+2 x^{2}+$ $3.36 x+8.64$

3.5-8 Ill-behaved Newton's method

We used the given table to find the ratios $\left(\left(x_{n+1}-x_{n}\right) /\left(x_{n}-x_{n-1}\right)\right)$. Results are summarized below:

n	x_{n}	$x_{n}-x_{n-1}$	Ratio
0	0.75		
1	0.752710	0.00271	
2	0.754795	0.00208	0.7675
3	0.756368	0.00157	0.7548
4	0.757552	0.00118	0.7516
5	0.758441	0.000889	0.7534

It can be seen that the ratio largely stayed around $0.75=(m-1) / m$ pointing to multiplicity of roots to be $m=4$. In order to find the root accurately we may use Newton's method to solve $f^{(3)}(x)=0$ and use $x=0.758441$ as the initial guess. Alternatively, we may try to deflate the given polynomial $f(x)=0$ through synthetic division by $x-0.75$. This deflation may be done repeatedly till we have deflated the polynomial for application of analytical cubic and quadratic equation formulae.

Chapter 7.3-Nonlinear systems

7.3-2 Newton-Rhapson

7.3-2a
$(x, y)=(\pm 1.583333333333333, \pm 1.225000000000000)$
7.3-2b
$(x, y)=(1.770168921750883,0.465430442834188)$
and
$(x, y)=(-1.44115096827044,0.693376500656804)$

7.3-2c

$(x, y)=(0.49505850685041,0.868859640441128)$
and
$(x, y)=(-0.847105381160620,-0.531424945978942)$

7.3-2d

$(x, y)=(0.215760915631622,-0.379541251533151)$
and
$(x, y)=(0.390979883845692,-1.793154775639278)$

7.3-3 Newton-Rhapson

Following is the summary of results obtained from different initial iterates (accuracy $=$ $\left.\left\|x^{(k-1)}-x^{(k)}\right\| \leq 10^{-12}\right)$.

$\left(x_{o}, y_{o}\right)$	$\operatorname{Final}\left(x_{n}, y_{n}\right)$	Iterations
$(1.2,2.5)$	$(1.336355377217167,1.754235197651699)$	6
$(-2.0,2.5)$	$(-0.901266190783034,-2.086587594656979)$	10
$(-1.2,-2.5)$	$(-0.901266190783034,-2.086587594656979)$	6
$(2.0,-2.5)$	$(-3.001624886676722,0.148107994958366)$	20
$(2.98,0.15)$	$(2.998365348111602,0.148430977729681)$	4

7.3-5 Newton-Rhapson

Choosing $x^{(0)}=(1,-1)$, following is the summary of iterations obtained:

k	$\left\\|\alpha-x^{(k-1)}\right\\|$	Ratio
0	$3.74 E-01$	
21	$8.34 E-02$	0.223
2	$4.13 E-02$	0.495
3	$1.84 E-02$	0.445
4	$8.66 E-03$	0.472
5	$4.05 E-03$	0.467
6	$1.82 E-03$	0.450
7	$8.19 E-04$	0.450
8	$3.66 E-04$	0.447
9	$1.63 E-04$	0.447
10	$7.29 E-05$	0.446
11	$3.25 E-05$	0.446
12	$1.45 E-05$	0.446
13	$6.46 E-06$	0.446
14	$2.88 E-06$	0.446
15	$1.28 E-06$	0.446
16	$5.72 E-07$	0.446
17	$2.55 E-07$	0.446
18	$1.14 E-07$	0.446
19	$5.06 E-08$	0.446
20	$2.26 E-08$	0.446
21	$1.01 E-08$	0.446
22	$4.48 E-09$	0.446

$$
x^{(22)}=(1.203166968,-1.374080530)
$$

